Code No.: 15543 S N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (Mech. Engg.) V-Semester Supplementary Examinations, June-2023 **Heat Transfer**

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Part-A ($10 \times 2 = 20 \text{ Marks}$) Stem of the question	1 1		-	
1.	What are the different applications of heat transfer in engineering	M 2		CO	P(
2.	What is the effect of thickness of insulation on heat transfer through systems in cartesian and cylindrical coordinates?	2	3	1	1
3.	Define fin efficiency and fin effectiveness.	2	1	2	1
4.	Write at least two applications of Transient heat conduction.	2	2		
5.	What is the importance of convection heat transfer- electricity analogy?			2	1
6.	Differentiate between Reynolds Number and Grashof Number.	2	3	3	1
7.	What is the effect of fault	2	2	3	1
8.	What is the effect of fouling on the performance of heat exchangers?	2	2	4	1
0.	What are the advantages of drop wise condensation over film wise condensation?	2	1	4	1
9.	Differentiate between Black and Gray bodies.	•		Nig s s	
	Define Irradiation and Emissive Power.	2	2	5	1
	Part-B $(5 \times 8 = 40 \text{ Marks})$	2	1	5	1
1. a)	Derive the general heat conduction equation in cartesian coordinates from first principles.	5	2	1	1
t	The wall of a residential building is made of 10.2 cm layer of brick k=0.70 W/m K) and 3.8 cm gypsum plaster (k=0.48 W/m K). Calculate the thickness of rock wool insulation layer (k=0.065 W/m K) that should be provided to bring down the rate of heat transfer through the wall by 0%.	3	3	1	2
te	an aluminium alloy fin (k=200 W/mK), 3.5 mm thick and 2.5 cm long rotrudes from a wall. The base is at 420°C and the ambient air emperature is 30°C. The heat transfer coefficient may be taken as 11 mm, find the heat loss and fin efficiency, if the heat loss from the fin p is negligible.	4	3	2	2
b) E:	xplain the concept of Lumped System Analysis.	4	2		

13. a)	Water at 10°C is heated to 40°C in the tube of 0.02 m ID at a mass flow rate of 0.01kg/s. The tube is supplied with a heat flux of 15000 W/m² over the surface. Neglecting the entrance effect, obtain the length of pipe needed to achieve the given temperature rise.	4	3	3	2
b)	Vertical door of a hot oven is 0.5m high and is maintained at 200°C. It is exposed to quiescent ambient at 20°C. Find the heat loss per unit width from the oven door.	4	3	3	2
14. a)	Air at 25°C flows over a cross flow car radiator and cools water from 99°C to 60°C. Water flows at a rate of 4 kg/min, while the mass flow rate of air is 14 kg/min. Consider air as mixed fluid. Determine the heat duty of the heat exchanger, effectiveness of the heat exchanger and the overall heat transfer coefficient.	4	3	4	2
b)	With a neat sketch, explain the pool boiling curve of Nukiyama.	4	2	4	1
15. a)	Two parallel and infinite gray surfaces are maintained at temperatures of 127°C and 227°C respectively. If the temperature of the hot surface is increased to 327°C, by what factor is the net radiation exchange per unit area increased? Assume the emissivities of the cold and hot surfaces as 0.9 and 0.7 respectively.	4	3	5	2
b)	Define (i) opaque body, (ii) white body, (iii) black body and (iv) transparent body.	4	1	5	1
16. a)	Explain the terms: i) Overall Heat Transfer Coefficient, ii) Contact Resistance	4	1	1	1
b)	A mild steel sphere of 15 mm diameter is initially at 625°C. It is exposed to a current of air at 25°C, with a convection coefficient of 120W/m²K. Calculate the time required to cool the sphere to 100°C. The density, specific heat and thermal conductivity of the material respectively is 7800 kg/m³, 470 J/kg-K and 60 W/mK.	4	3	2	2
17.	Answer any two of the following:				
a)	velocity boundary layer over an isothermal flat plate.	4	1	3	1
b)	condensation over a vertical flat plate?	4	2	4	1
c)	Air at 27°C and 1 atmosphere pressure flows over a flat plate with a speed of 2 m/s. Calculate the hydrodynamic boundary layer thickness and the rate of heat transfer from the plate, if the plate is held at 60°C.	4	3	5	2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	31.25%
iii)	Blooms Taxonomy Level – 3 & 4	48.75%